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Abstract 
Background: Bisphenol A (BPA) can impair kidney function via oxidative stress. Glutamine (Gln) is an amino acid with 

antioxidant and immunomodulatory activities. This study assessed the protective activity of Gln against BPA-induced 

nephrotoxicity in rats 

Methods: Thirty adult male Wistar rats (200-230g) were randomly divided into 6 groups (each containing 5 rats). The rats were 

orally treated daily for 60 days as follows: Groups A (Control), B, and C were treated with normal saline (0.2 mL), Gln (80 
mg/kg), and BPA (50 mg/kg), respectively. Groups D-F were supplemented with 20 mg/kg, 40 mg/kg, and 80 mg/kg of Gln 

before treatment with BPA (50 mg/kg), respectively. Blood samples were collected and serum renal biochemical markers were 

measured. The kidneys were weighed and evaluated for oxidative stress markers and histological changes.  
Results: The administration of BPA decreased body weight (p<0.01) and increased kidney weight (p<0.01) when compared with 

the control group. The BPA-induced alterations in serum renal biochemical markers were accompanied by elevated urea 

(p<0.001), creatinine (p<0.001), and uric acid levels (p<0.001) as well as decreased electrolytes (p<0.01) when compared with 
the control group. Altered kidney oxidative stress markers caused by BPA were marked by a significant decrease in glutathione, 

catalase, superoxide dismutase, and glutathione peroxidase levels (p<0.001) with a significant increase in malondialdehyde levels 

(p<0.001) when compared with the control group. Moreover, BPA caused kidney tubular necrosis, widened bowman’s space, 
collapsed glomerulus, and lipid accumulation. However, supplementation with Gln (20, 40, and 80 mg/kg) significantly reversed 

the BPA-induced nephrotoxicity in a dose-dependent manner when compared with the BPA group. Furthermore, different doses 

of Gln restored kidney histology.  
Conclusion: Based on the results, Gln may have clinical protective effect against BPA-associated nephrotoxicity.

 

 

 

 

 

 

 

Introduction 
Bisphenol A (BPA) is an essential component used for the production of epoxy 

resins, polycarbonate plastics, and hard plastic bottles that have everyday 

applications. Epoxy resins are used as coatings for food packages, polyvinyl 

chloride pipes, and automobile components (1). The frequent use of BPA-

associated products has led to measurable BPA levels in various human biological 

fluids, including neonatal blood, amniotic fluid, and human breast milk (2). It has 

also been found in the blood and urine samples of humans (3). Exposure to BPA 
may lead to accumulation, thereby incapacitating the activities of vital organs, 

including the kidneys. Moreover, elevated levels of BPA have been reported in 

people with renal diseases, which is characterized by decreased glomeruli 
filtration rate (4,5). Several experimental studies correlated BPA accumulation, 

its plasma levels with impaired renal function (6). The exposure of animals to 

BPA causes deleterious effects on kidney function in various capacities, such as 
increased expression of proinflammatory mediators, the induction of oxidative 

stress, and the incapacitation of antioxidants response in renal tissues (5). BPA 

can increase the expression and enzyme activity of caspase-3 in renal tissues, 
which can lead to cell apoptosis (7). This has been associated with azotemia 

indicated by increased blood urea nitrogen and serum creatinine concentrations 
(8). Experimental studies have shown impaired kidney morphology characterized 

by glomerular atrophy, intratubular hemorrhage, and tubular necrosis (9). 

Glutamine (Gln) is an essential L-α-amino acid with many metabolic functions, 
including gluconeogenesis, acid-base balance, homeostasis, nitrogen transport 

proteins, and nucleic acids syntheses. It plays an important role in cell 

homeostasis and organ metabolism (10, 11). This amino acid is also essential for 

nucleotide and glutathione (GSH) syntheses, which contribute to the reduction of 

oxidative stress (12). In GSH biosynthesis, Gln supplies glutamate to the GSH 
system, which is a primary source of cellular antioxidant defense (12). It can 

protect cells and tissues from stress and injuries by decreasing inflammation and 

oxidative stress and improving immune cell function (10). Studies have reported 
that Gln decreased renal injury caused by acetaminophen (13) and diabetes-

induced nephropathy (14). It attenuates cisplatin-induced renal injury and inhibits 

renal cell apoptosis (15). Given the important protective functions of Gln in renal 
injury, this study aimed to assess the protective activity of Gln against PBA-

induced renal injury. 

 

Methods 

Animals and chemicals  

Thirty adult male Wistar rats (200-230 g) were randomly divided into 6 groups 
(A-F), each containing 5 rats. The rats were maintained in a 12/12-h light/dark 

cycle under natural conditions, in plastic cages. Rat chow and water were 

supplied to the rats’ ad libitum. The rats were handled according to the Guide for 
the Use of Laboratory Animals (16). The rats were obtained from the animal unit 

of the Faculty of Pharmacy, Madonna University, Rivers State, Nigeria. 

Bisphenol A (Loba Chemie Pvt. Ltd, India) and L-Glutamine (Qualikems Fine 
Chem Pvt Ltd, India) were purchased. Approval was obtained from the Research 

Ethics Committee of the Department of Pharmacology, Faculty of Pharmacy, 

Madonna University (Approval code: REC/PHARM/013/2022).  

Animal treatment 

The rats were orally treated daily for 60 days as follows: Groups A (Control), 

B, and C were treated with normal saline (0.2 mL), Gln (80 mg/kg) (17), and BPA 
(50 mg/kg) (18), respectively. Groups D-F were supplemented with 20 mg/kg, 40 

mg/kg, and 80 mg/kg of Gln before treatment with BPA (50 mg/kg), respectively. 

Animal sacrifice and evaluations of serum biochemical markers 

After the treatment, the rats were weighed and anesthetized. Blood and kidney 

samples were obtained for biochemical assessments and oxidative stress marker 

assay, respectively. Kidney samples were also assessed for histological changes. 
Blood samples were centrifuged at 1,500 RPM for 15 minutes, and sera were 

extracted and evaluated for serum total protein, urea, albumin, uric acid, 
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potassium, bicarbonate, chloride, and sodium using an auto analyzer (Konelab™ 
PRIME 60i, Thermo Scientific, Vantaa, Finland). 

Determination of relative kidney weight 

The relative kidney weight was calculated according to the following formula:  
Relative kidney weight =   Absolute kidney weight (gram) x 100 

                                                   Body weight (gram)                                         

 
 

Evaluation of kidney oxidative stress markers 

Kidney superoxide dismutase (SOD) was measured according to a previous 
study (19). Malondialdehyde (MDA) was estimated as explained by Buege and 

Aust (20). Moreover, GSH was estimated according to the method explained by 

Sedlak and Lindsay (21). Glutathione peroxidase (GPx) was determined 
according to the protocol explained by Rotruck et al. (22). Catalase (CAT) was 

estimated as described by Aebi (23). 

Histological assessment of the kidney 

Kidney tissues were obtained and kept in 10% formalin saline. After 24 hours, 

the kidney tissues were dehydrated in graded solutions of alcohol. Kidney tissues 

were processed, embedded in paraffin wax, and sectioned (with 3 µm thickness) 
using a microtome. The sectioned tissues were placed on slides and then stained 

with Haematoxylin and Eosin (Bio Lab Diagnostics Limited, Mumbai, India). 

The slides were later examined under a light microscope. 

Statistical analysis 

Data were presented as mean ± standard error of the mean (SEM). Data were 

analyzed using one-way analysis of variance (ANOVA) and Bonferonni post hoc 
test using GraphPad Prism 5 (San Diego, CA USA). The statistical significance 

level was set at 0.05, 0.01 and 0.001  
 

Results 

Effects of Gln on the body and kidney weights of rats treated with BPA 

The body and kidney weights of Gln (80 mg/kg)-administered rats did not 
change significantly when compared with the control. The administration of BPA 

significantly decreased body weight (p< 0.01) and significantly increased kidney 

weight (p<0.01) when compared with the control. However, the body and kidney 
weights were restored after Gln (20 mg/kg, 40 mg/kg, and 80 mg/kg) 

supplementation when compared with the BPA group (Table 1). 

 

 

 

Effects of serum Gln on renal function markers and electrolytes of rats treated 

with BPA 

The administration of Gln (80 mg/kg) had no significant effect on serum urea, 

creatinine, uric acid, and electrolytes (Tables 2 and 3). However, BPA 
administration significantly increased serum urea, creatinine, and uric acid levels 

(p<0.001) and significantly decreased serum electrolytes (p<0.001) when 

compared with the control. In addition, Gln (20 mg/kg, 40 mg/kg, and 80 mg/kg) 
supplementation significantly decreased serum urea, creatinine, and uric acid 

levels in a dose-dependent manner. Serum electrolytes increased significantly in 

the Gln (20 mg/kg, 40 mg/kg, and 80 mg/kg) supplemented rats when compared 

with the BPA group (Tables 2 and 3). 

 

 

 

 

 

Effect of Gln on kidney oxidative stress parameters of rats treated with BPA 

The administration of Gln (80 mg/kg) had no significant impact on kidney 
antioxidants (SOD, GSH, CAT, and GPx) and MDA levels when compared with 

the control group. In contrast, BPA administration significantly decreased kidney 

antioxidants (p < 0.001) and significantly increased MDA levels (p<0.001) when 
compared with the control group (Table 4). Supplementation with Gln (20 mg/kg, 

40 mg/kg, and 80 mg/kg) significantly increased kidney antioxidants and 

significantly decreased kidney MDA levels in a dose-dependent manner when 
compared with the BPA group (Table 4). 

 

Effect of Gln on the kidney histology of rats treated with BPA 

  The kidneys of the control group and Gln (80 mg/kg) administered group had 

normal glomeruli and renal tubules (Figures 1A and B). However, the kidneys of 
BPA-administered rats showed collapsed glomerulus, widened Bowman’s space, 

lipid accumulation, and tubular necrosis (Figure 1C). The kidneys of rats 

supplemented with Gln (20 and 40 mg/kg) showed widened Bowman’s space and 

tubular necrosis (Figures 1D and 1E). The kidneys of rats supplemented with 80 

mg/kg Gln showed normal glomerulus and renal tubule (Figure 1F). 

 

Table 4: Effect of Gln on oxidative stress parameters of rats treated with BPA 
Dose 

mg/kg 
MDA 

(nmol/mg 

protein) 

GSH 

(µmole/mg 

protein) 

CAT 

(U/mg protein) 

GPx 

(U/mg protein) 

SOD 

(U/mg protein) 

Control group 0.45±0.07 10.82±0.79 25.84±2.32 19.03±1.11 26.84±3.24 

Gln 80 0.40±0.05 10.93±0.98 26.03±2.17 19.71±2.59 27.01±2.00 

BPA 50 1.61±0.09# 4.05±0.16# 7.56±0.38# 7.00±0.81# 9.32±0.06# 

Gln 20+ BPA50 1.20±0.05π 5.72±0.62 π 11.74±0.45 π 10.64±0.62 π 12.94±0.28 π 

Gln 40+ BPA50 0.73±0.04* 6.97±0.55* 15.91±1.76* 13.81±0.53* 16.33±1.55* 

Gln80+  BPA50 0.40±0.02** 9.77±0.19** 22.03±2.19** 18.73±1.21** 24.91±3.62** 

MDA: Malondialdehyde, GSH: Glutathione, CAT: Catalase, SOD: Superoxide dismutase, GPx: 

Glutathione peroxidase, BPA: Bisphenol A, Gln: Glutamine 

 a  (p<0.001) Significant difference when compared with the control group. 
b (p<0.05) c (p<0.01) d (p <0.001) Significant difference when compared with the BPA group. 

 

Table 1: Effect of Gln on body and kidney weights of rats treated with BPA 

Dose (mg/kg) Final body 

weight (g) 

Absolute kidney 

weight (g) 

Relative kidney 

weight (%) 

Control group 265.8±18.0 0.77±0.04 0.29±0.08 

Gln 80 265.7±16.9 0.70±0.06 0.26±0.01 

BPA 50 180.3±11.0 a 2.00±0.05 a 1.11±0.07 a 

Gln 20+ BPA50 220.4±16.7 b 1.51±0.07 b 0.69±0.09 b 

Gln 40+ BPA50 261.7±14.4 c 1.00±0.09 c 0.38±0.03 c 

Gln 80+ BPA50 262.5±16.7 c 0.80±0.04c 0.30±0.05 c 

BPA: Bisphenol A, Gln: Glutamine 
a Significant difference when compared with the control group (p<0.01). 
b (p<0.05) and c (p<0.01) significant differences when compared with the BPA group.  

 

Table 2: Effect of Gln on serum biochemical parameters of rats treated with BPA 

Dose (mg/kg) Creatinine 

(mmol/L) 

 

Urea 

(mmol/L) 

Uric acid 

(mmol/L) 

 

Control group 115.8±2.60 5.26±0.23 1.75±0.65 

Gln 80 110.5±10.4 3.10±0.20 1.79.±0.01 

BPA 50 272.6±14.3a 15.5±0.31 a 4.70±0.06 a 

Gln 20 + BPA 50 220.3±16.6b 11.7±0.13 b 4.01±0.13 b 

Gln 40+  BPA 50 171.7±13.3c 8.23±0.75 c 3.25±0.24 c 

Gln 80+  BPA 50 130.0±10.7d 5.65±0.45 d 1.90±0.50 d 

 

BPA: Bisphenol A, Gln: Glutamine 
a (p<0.001) Significant difference when compared with the control group. 
b (p<0.05) c (p<0.01) d (p <0.001) Significant difference when  compared with the BPA group. 

 

.  

 

Table 3: Effect of Gln on serum electrolytes of rats treated with BPA 

Dose (mg/kg) Potassium 

(mmol/L) 

Sodium 

(mmol/L) 

Chloride 

(mmol/L) 

Bicarbonate 

(mmol/L) 

Control group 6.07±0.28 122.53±13.4 100.72±9.01 22.45±2.53 

Gln 80 6.10±0.37 120.02±10.2 110.53±8.11 23.05±2.09 

BPA 50 2.70±0.32 a 60.51±9.03 a 44.87±5.76 a 12.53±1.76 a 

Gln 20 + BPA 50 3.34±0.65 b 81.36±6.9 b 56.54±5.05 b 15.86±1.05 b 

Gln 40+  BPA 50 4.42±0.15 c 101.70±10.5 c 77.06±5.70 c 19.32±1.70 c 

Gln 80+  BPA 50 5.89±0.60 d 122.94±12.1d 99.75±7.64 d 21.50±3.64 d 

BPA: Bisphenol A, Gln: Glutamine 
a  (p<0.001) Significant difference when compared with the control group. 
b (p<0.05) c (p<0.01) d (p <0.001) Significant difference when compared with the BPA group. 

 

 

 

 

 

 

 

 

Figure1:Kidney micrographs obtained from rats in different study groups. A: Control, B: Treatment 

with PBA (50 mg/kg), C: Treatment with glutamine (20 mg/kg) + bisphenol A (50 mg/kg), D: 

Treatment with glutamine (40 mg/kg) + bisphenol A (50 mg/kg), E: Treatment with glutamine (80 

mg/kg) +bisphenol A (50 mg/kg). GL: Normal glomerulus, RT: Normal renal tubule, TN: Tubular 

necrosis, LP: Lipid accumulation, WB: Widened Bowman’s Space, CG: Collapsed glomerulus 
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Discussion 
This study explored the ability of Gln to prevent BPA-induced kidney damage 

in rats. In the present study, BPA decreased body weight and increased kidney 
weight. This observation confirmed earlier reports, which showed a decrease in 

the body weight and an increase in the kidney weight of BPA (40mg/kg)-

administered rats (18). In this study, BPA incapacitated kidney function by 
stimulating high serum levels of urea, creatinine, and uric acid with low levels of 

serum electrolytes. This observation is in agreement with the dysfunctional levels 

of the aforementioned parameters reported in BPA (50 mg/kg -150 mg/kg) -
induced renal damage in rats (8). Moreover, BPA caused notable impairment in 

the functional abilities of kidney antioxidants characterized by depleted levels of 

SOD, GPx, CAT, and GSH. Similarly, Kobroob reported low levels of kidney 
antioxidants in BPA-administered rats (8). One of the attributes of drug-induced 

renal damage is the occurrence of lipid peroxidation. In our study, lipid 
peroxidation was conspicuous in the kidneys of BPA-treated rats, marked by 

elevated levels of MDA. In line with this finding, Edres et al. reported elevated 

kidney MDA levels in BPA-induced kidney dysfunction (18).  
In the present study, we observed tubular necrosis, collapsed glomerulus, 

widened Bowman’s space, and lipid accumulation in the kidneys of BPA-treated 

rats. This is in agreement with a previous study conducted by Korkmaz et al. (24). 
Several speculated mechanistic factors have been associated with BPA-induced 

renal dysfunction. In 2013, Manikkam et al. attributed this to the accumulation 

of BPA toxic metabolites and the inability of the kidneys to excrete the 

metabolites (25). The accumulated toxic metabolites can alter kidney 

morphology, thereby impairing kidney function. Bosch-Panadero et al. associated 

BPA-induced renal damage with mitochondrial injury, oxidative stress, and the 
apoptosis of kidney cells (26). Mourad and Khadrawy suggested that renal 

pathology caused by BPA might be due to the generation of reactive oxygen 

species by its metabolites (27). In the present study, Gln supplementation 
prevented BPA-induced renal damage in a dose-dependent manner. This was 

characterized by restored levels of serum renal biochemical markers and 

decreased kidney MDA levels. It was also accompanied by increased kidney 
antioxidants and restored kidney morphology. Similarly, in a study by Brovodan 

et al. (13), Gln restored renal function in acetaminophen-treated rats. Sadar et al. 

also reported that Gln protected against diabetes-induced nephropathy in rats 
(14). In contrast with these findings, some studies claimed that Gln did not 

prevent cisplatin- (28) and cyclophosphamide (29)-induced nephrotoxicity in 

rats. In this study, restored kidney function due to Gln supplementation might be 
attributed to its antioxidant activity. Since Gln is a substrate for the synthesis of 

GSH, which is the most abundant cellular thiol and antioxidant (30), the 

administration of Gln might have increased GSH synthesis, thus inhibiting 
oxidative stress (31). Moreover, GSH is an antioxidant that scavenges 

electrophilic and oxidant species directly or through enzymatic catalysis. It 

quenches reactive hydroxyl free radicals as well as other oxygen-centered free 
radicals. It is the co-substrate of GPx that inactivates peroxides (hydrogen and 

lipid peroxides) (32). Furthermore, Gln might have decreased renal production 

of pro-inflammatory mediators and renal cell apoptosis, which have been 
associated with BPA-induced renal dysfunction. Studies revealed that Gln 

produces anti-inflammatory effects by decreasing the expression of pro-

inflammatory cytokines (33).  
 

Conclusion 

Based on the results, it can be concluded that Gln supplementation prevents 
BPA-induced alterations in renal serum biochemical markers, oxidative stress, 

and kidney histology in a dose-dependent manner. It may have beneficial 

application for the management of BPA-associated renal dysfunction. 
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